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PHENOMENOLOGICAL MODEL OF PUNCH-THROUGH

S. T. Mileiko and O. A. Sarkisyan UDC 539.3.534.1

At this time the most widespread method for analyzing the punch-through process, based on a numerical
procedure for solving the problem posed under any assumptions about the constitutive equations of the medium
and, as a rule, without considering fracture processes (e.g., [1]), yields results that are not always convenient
from the practical viewpoint, In particular, these results are difficult to compare with experimental data in
which the critical punch-through velocities are most often recorded (e.g., [2, 3]). In the probable future, when
crack generation and development criteria and the constitutive equations of a medium become sufficiently reli~
able under high-speed loading conditions, numerical methods will permit the efficient solution of practical
problems. However, at this time there is a need for simple models to describe the punch-through process.
The model proposed is an example of this kind of phenomenology.

It is shown in [2] that in those cases when punch-through is accompanied by the recovery of a "piug, the
main contribution fo the resistance against inserting the impactor is from plastic deformation or brittle frag-
mentation of a comparatively thin cylindrical layer, In this case, at least if plastic deformation occurs, it is
evident that the resistance to the impactor motion should depend on the velocity v of the impactor.

Let us assume that the quantity F for a given impactor-obstacle pair depends only on v. (It is clear that
this assumption is invalid when the impactor is near the obstacle surface, hence, we consider only obstacles
of sufficiently great thickness.) Let us approximate this dependence by a power-law function

F(y) = —Kum,
where K and n are constants,

If v =v,for x =0 (x is the coordinate in the direction of impactor motion and the origin is on the frontal
surface of the obstacle), then

VIt 2 =k (2 —n)x,
where k = X/m and m is the impactor mass.
For an obstacle thickness h we have the critical velocity v = vx of the impactor so that v = 0 for x = h:
Uy = k(2 —n)h.
For v, > vx we have the velocity v, of impactor taking off from the obstacle so that
n = =1,
where v = v/vx.

The result obtained (which corresponds, for n = 0, to the condition of constancy of the energy absorbed
by the obstacle, and is sometimes [4] taken as being sufficiently evident) turns out to be wonderfully simple:
the curve \71(;/0) is independent of the obstacle thickness, This simplicity requires convincing experimental con-
firmation.
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An experiment was posed by the method and on the apparatus described earlier [2], except that the ap-
paratus was provided with a2 second unit to measure the velocity vy with an appropriate modification of the
method, The results of the experiment on punching through an obstacle of copper, aluminum AMg-6 and ti-
tanium VT-14 alloys by steel balls are represented in Fig. 1 (the conditions for the experiment and the nota-
tion of the points are presented in Table 1),

The experimental resulis are, as is seen, stacked sufficiently well within the framework of a single
curve v,(vVy), even as the diameter d of the ball-impactor changes. Hence, it can be assumed that the quantity
n in the power-law approximation F(v) is determined only by the obstacle material, i.e., the dependence of a
certain characteristic stress (for instance, the yield point o) on the strain rate &, In such a case the char-
acteristic dimension a(v = £a) should be the thickness of the plastically deformable or spalled cylindrical layer
[2] observable during punch-through. The real values of the quantity a are on the order of 1 mm; therefore,
at the velocities 10°-10° m/sec the quantities & are on the order of 10°-10% sec™!, This makes difficult the com-
parison of quantities obtained in experiments on punch-through with direct measurements of the dependence
ox(8): the majority of experimental results of this kind are constrained to the strain rates 104-10° sec~! [5].
Nevertheless, the comparisons presented in Table 2 qualitatively indicate the reasoning presented.

Conditions of the experiments from whose data the quantities in Table 2 have been determined are pre-
sented in [6-8]. Polycrystalline aluminum at room temperature was used in [6], the characteristic stress ox
corresponds to 20% plastic deformation, € =10%-1,2-10% sec™!; technically pure titanium at room temperature
was used in [7], and the quantity o corresponds to 0.2% plastic deformation and & =5-10%°-5-10° sec™'; copper
at room temperature was used in [8] and ox corresponds to 5% deformation, while £ =5410%-5.10% sec™,

The simple formula obtained above for the critical punch-through velocity vk as a function of the obstacle
thickness h should be corrected, taking into account that F = 0 for x = 0 and x = h.

The authors are grateful to G, Yu. Peregudova and E. D. Panteleev for aid in executing the experiment.

LITERATURE CITED

1. G. P. Men'shikov, V. A. Odintsov, and L. A. Chudov, "Insertion of a cylindrical impactor in a finite
slab," Izv. Akad. Nauk SSSR, Mekhan, Tverd. Tela, No. 1 (1976},

2, S. T. Mileiko, S. F. Kondakov, and E. G. Golofast, "On a punch~through case," Probl, Prochn., No. 12
(1979).



V. F¥. Rekht and T. V. Ipson, "Dynamics of ballistic punch-through," Priki. Mekhan., No. 3 (1963),

W. Johnston, Impact Strength of Materials, Edward Arnold, London (1972),

5. A. J, Holzer, "A tabular summary of some experiments in dynamic plasticity," J, Eng, Mater., Technol.,
101, No., 7 (1979).

6. C. K. H. Dharan and F. E. Hanser, "Determination of stress—strain characteristics at very high strain
rates," Exp. Mech., 10, 370 (1970).

7. J. Harding, "The temperature and strain rate sensitivity of a-titanium," Arch, Mechan., 27, 715 (1975).

8. A, R. Dowling, J. Harding, and J. D. Campbell, "The dynamic punching of metals," J, Inst. Metals,

98, 215 (1970).

»w

ESTIMATION OF THE TEMPERATURE ON THE HUGONIOT
ADIABAT BY USING THE "MIRROR IMAGE" RULE

A. A, Dolgov and M. Yu. Messinev ' UDC 541.12.03

Existing methods of computing the temperature of a solid body compressed by a shock, which require
tedious calculations, are approximate to some degree or other. This is associated both with the inaccuracies
in giving the potential and the magnitudes of its governing coefficients and with the selection of the equation
of state, In practical computations, the approximation I'/V = I';/V, is often used, where I' is the Grunhausen
coefficient, V is the volume, and the subscript zero refers to the initial state of the substance [1, 2], and the
"mirror image" rule also. The foundation for this rule is the law for doubling the mass flow rate of a sub~
stance uy in an unloading wave [3, 4] which has been established experimentally for not too high pressures py
in the shock.

In many papers [4-7], the agreement between the unloading isentrope and shock compressibility curve in
p—u-coordinates is used to evaluate just one of the Riemann integrals governing the shape of the isentrope on
the p—V plane. This procedure permits giving an estimate of the magnitude of the volume increment of the
material because of the irreversible shock heating after unloading to zero pressure:

duH
dp

P
~ o 2
Mies = Vies —Vo— | (S dp—aVa. 8
0

However, within the framework of the same "mirror" approximation, it is possible to write a second
Riemann integral also for the energy E:

dugy

»
AEres = Eres —E,=AEy _j'p( ap ) dp. 2)

0

Since (1) and (2) for the residual parameters are formally equivalent, the question occurs as to which
describes the thermodynamics of shock compression best,

Both the true and the "mirror image" residual quantities admit of expansion in Taylor series at low
pressures. For deviations of these parameters it is possible to obtain
AV irue— AVreg ~ 0 ~ AVpye AEpes~AE oo~ p*,
from which it follows that the "mirror" approximation for the energy (2) best describes the thermodynamics
of shock compression. The use of (1) results also in substantial inaccuracies in computing the shape of the
"mirror" isentropes [7].

It is possible to arrive at the same deduction by comparing the thermodynamic consequences of the inte-
grals (1) and (2) with the extensively used approximation I'/V = const. As in [8], the thermodynamic equality
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